

Design, Construction, and In-service Performance of an Ice-Capable Pilot Boat

Rory Macdonald, Lengkeek Vessel Engineering, Halifax NS Donald MacPherson, HydroComp, Inc., Durham NH

Mari-Tech 2019, Ottawa, ON

THE STORY OF A VERY SPECIAL BOAT...

M/V Taukamaim

Lengkeek Vessel Engineering was lead designer;
 HydroComp assisted with propeller and powering

INTRODUCTION

- Pilotage station at Les Escoumins, QC
- First-year ice of brackish water, 10/10, snow-covered, no leads, with ridges

DESIGN MANDATE

- A pilot boat derived from the LVE-designed 20m high-speed "ice-strengthened" boat for LPA
 - Maneuvering in ice was of greater design priority than open-water performance
 - Needs low freeboard for boarding of multiple vessel types (including tug/barge combos)

HULL FORM DESIGN

- Designed in consultation with John Carter
 - "A lovely swept hull form" inspired by R-class form
 - Addition of hard chines now the "Terry Fox" form
- Ice clearing by flow
 - Stern wave system helps to lift and break ice

HULL FORM DESIGN

- Ice clearing by shape
 - <25 deg profile angle; low deadrise; pushes ice down and out
 - Beam carried forward; allows thinner plating aft
- Propeller concerns
 - Large tip clearance (25%D) for ice passage

STRUCTURAL FEATURES

- Classed to LR Notation: ★100A1 SSC Pilot Mono, Ice Class 1D, G2, Near Coastal Voyage, Class 2
 - Structure made heavier by direct calcs (Timoshenko);
 referenced study of ice properties for crushing strength
- Framing oriented to loads
 - Transverse framing except in bow
 - Longitudinal framing narrows span where ice is pushed

SELECTED MACHINERY

- Engines
 - CAT C32 950 HP (same as LPA's other boat)
- Miscellaneous
 - Lo-Rez vibration coupling and torque limiter
 - Fernstrum box coolers
 - Deck heating by rectangular steel tubing
 - Handrail heating!

POWERING CALCULATIONS

- Design conditions
 - 5 knots in 400 mm ice with 300 mm snow cover
 - 13 knots top speed in open water (85% MCR)
- Resistance predictions
 - Hull form varies from methods: be conservative!
 - Validation study of similar vessel benchmark

PROPELLER SPECIFICATION

- Multi-objective design points
 - Top speed + towpull + "ice milling" added torque
 - BAR sized for 11-12 knots; accept cavitation at 13 knots
 - Deeper gear ratio option selected for higher pitch;
 greater clearance between blades
 - Flat-faced segmental design with heavy edges for ease of inspection, repair; beneficial for reversing!
 - Thickness per LR Ice Class 1D/1E; heavier edges

PROPELLER CAD

Custom geometry for manufacture

IN-SERVICE PERFORMANCE

- Successfully met objectives
- Performance in ice
 - Maximum conditions; 600+ mm ice
 - Never stuck; no damage; completed all assignments!
- Open-water
 - Achieved 13 knots at 80% engine load (well matched)
 - Some vibration at 13 knots (expected)

CONCLUSIONS AND LESSONS LEARNED

- Improvements to consider
 - Bow great for ice;not so much for open-water
 - Increase freeboard if possible
 - Add bulwarks fwd to reduce wetness
 - Add spray rails

THANKS! QUESTIONS?

REFERENCES

- Lengkeek Vessel Engineering
 - rory@lengkeek.ca
 - www.lengkeek.ca

- HydroComp, Inc.
 - donald.macpherson@hydrocompinc.com
 - www.hydrocompinc.com

